Motor cortex bilateral motor representation depends on subcortical and interhemispheric interactions.
نویسندگان
چکیده
The corticospinal tract is a predominantly crossed pathway. Nevertheless, the primary motor cortex (M1) is activated bilaterally during unilateral movements and several animal studies showed that M1 has a bilateral motor representation. A better understanding of the uncrossed corticospinal system is especially important for elucidating its role in recovery of limb control after unilateral injury. We used intracortical microstimulation (ICMS) to determine the representation of contralateral and ipsilateral forelimb joints at single M1 sites in the rat. Most sites representing an ipsilateral joint corepresented the same joint contralaterally. We next determined whether ipsilateral responses evoked in one hemisphere depended on the function of M1 in the opposite hemisphere using reversible inactivation and pyramidal tract lesion. Ipsilateral responses were eliminated when the homotopic forelimb area of M1 in the opposite hemisphere was inactivated or when the pyramidal tract on the nonstimulated side was sectioned. To determine the role of transfer between M1 in each hemisphere we sectioned the corpus callosum, which produced a 33% increase in ipsilateral ICMS thresholds. Neither M1 inactivation nor callosal section changed contralateral response thresholds, indicating the absence of tonic excitatory or inhibitory drive to the opposite M1. Finally, ipsilateral responses following M1 inactivation and pyramidal tract lesion could be evoked after systemic administration of the K(+) channel blocker 4-aminopyridine, suggesting the presence of latent connections. Our findings show important interactions between the corticospinal systems from each side, especially at the spinal level. This has important implications for recruiting the ipsilateral corticospinal system after injury.
منابع مشابه
Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging.
OBJECTIVE This study aimed at identifying the impact of subcortical stroke on the interaction of cortical motor areas within and across hemispheres during the generation of voluntary hand movements. METHODS Twelve subacute stroke patients with a subcortical ischemic lesion and 12 age-matched control subjects were scanned using 3-Tesla functional magnetic resonance imaging. Subjects performed ...
متن کاملEffects of High-Frequency Repetitive Transcranial Magnetic Stimulation on Motor Functions in Patients with Subcortical Stroke
Background: Motor function impairment occurs in approximately two-thirds of patients with subcortical stroke. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique for modulating cortical excitability. Objectives: The present study was designed for assessing the efficacy of high-frequency rTMS (5 Hz) on ipsilesional primary motor cortex in patients with subcortical stro...
متن کاملAltered structural and functional connectivity between the bilateral primary motor cortex in unilateral subcortical stroke
A large number of functional imaging studies have focused on the understanding of motor-related neural activities after ischemic stroke. However, the knowledge is still limited in the structural and functional changes of the interhemispheric connections of the bilateral primary motor cortices (M1s) and their potential influence on motor function recovery following stroke.Twenty-four stroke pati...
متن کاملInterhemispheric Control of Unilateral Movement
To perform strictly unilateral movements, the brain relies on a large cortical and subcortical network. This network enables healthy adults to perform complex unimanual motor tasks without the activation of contralateral muscles. However, mirror movements (involuntary movements in ipsilateral muscles that can accompany intended movement) can be seen in healthy individuals if a task is complex o...
متن کاملHand Dominance and Age Have Interactive Effects on Motor Cortical Representations
Older adults exhibit more bilateral motor cortical activity during unimanual task performance than young adults. Interestingly, a similar pattern is seen in young adults with reduced hand dominance. However, older adults report stronger hand dominance than young adults, making it unclear how handedness is manifested in the aging motor cortex. Here, we investigated age differences in the relatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 19 شماره
صفحات -
تاریخ انتشار 2009